Reduced Intestinal Tumorigenesis in APCmin Mice Lacking Melanin-Concentrating Hormone
نویسندگان
چکیده
BACKGROUND Melanin-concentrating hormone (MCH) is an evolutionary conserved hypothalamic neuropeptide that in mammals primarily regulates appetite and energy balance. We have recently identified a novel role for MCH in intestinal inflammation by demonstrating attenuated experimental colitis in MCH deficient mice or wild type mice treated with an anti-MCH antibody. Therefore, targeting MCH has been proposed for the treatment of inflammatory bowel disease. Given the link between chronic intestinal inflammation and colorectal cancer, in the present study we sought to investigate whether blocking MCH might have effects on intestinal tumorigenesis that are independent of inflammation. METHODOLOGY Tumor development was evaluated in MCH-deficient mice crossed to the APCmin mice which develop spontaneously intestinal adenomas. A different cohort of MCH-/- and MCH+/+ mice in the APCmin background was treated with dextran sodium sulphate (DSS) to induce inflammation-dependent colorectal tumors. In Caco2 human colorectal adenocarcinoma cells, the role of MCH on cell survival, proliferation and apoptosis was investigated. RESULTS APCmin mice lacking MCH developed fewer, smaller and less dysplastic tumors in the intestine and colon which at the molecular level are characterized by attenuated activation of the wnt/beta-catenin signaling pathway and increased apoptotic indices. Form a mechanistic point of view, MCH increased the survival of colonic adenocarcinoma Caco2 cells via inhibiting apoptosis, consistent with the mouse studies. CONCLUSION In addition to modulating inflammation, MCH was found to promote intestinal tumorigenesis at least in part by inhibiting epithelial cell apoptosis. Thereby, blocking MCH as a therapeutic approach is expected to decrease the risk for colorectal cancer.
منابع مشابه
Stat6 Promotes Intestinal Tumorigenesis in a Mouse Model of Adenomatous Polyposis by Expansion of MDSCs and Inhibition of Cytotoxic CD8 Response
Intestinal tumorigenesis in the ApcMin/+ model is initiated by aberrant activation of Wnt pathway. Increased IL-4 expression in human colorectal cancer tissue and growth of colon cancer cell lines implied that IL-4-induced Stat6-mediated tumorigenic signaling likely contributes to intestinal tumor progression in ApcMin/+ mice. Stat6 also appears to promote expansion of myeloid-derived suppresso...
متن کاملCCR6, the Sole Receptor for the Chemokine CCL20, Promotes Spontaneous Intestinal Tumorigenesis
Interactions between the inflammatory chemokine CCL20 and its receptor CCR6 have been associated with colorectal cancer growth and metastasis, however, a causal role for CCL20 signaling through CCR6 in promoting intestinal carcinogenesis has not been demonstrated in vivo. In this study, we aimed to determine the role of CCL20-CCR6 interactions in spontaneous intestinal tumorigenesis. CCR6-defic...
متن کاملDclk1 facilitates intestinal tumor growth via enhancing pluripotency and epithelial mesenchymal transition
Doublecortin-like kinase 1 (Dclk1) is overexpressed in many cancers including colorectal cancer (CRC) andit specifically marks intestinal tumor stem cells. However, the role of Dclk1 in intestinal tumorigenesis in Apc mutant conditions is still poorly understood. We demonstrate that Dclk1 expression and Dclk1+ cells are significantly increased in the intestinal epithelium of elderly ApcMin/+ mi...
متن کاملRestoring Retinoic Acid Attenuates Intestinal Inflammation and Tumorigenesis in APCMin/+ Mice.
Chronic intestinal inflammation accompanies familial adenomatous polyposis (FAP) and is a major risk factor for colorectal cancer in patients with this disease, but the cause of such inflammation is unknown. Because retinoic acid (RA) plays a critical role in maintaining immune homeostasis in the intestine, we hypothesized that altered RA metabolism contributes to inflammation and tumorigenesis...
متن کاملLack of interferon-γ receptor results in a microenvironment favorable for intestinal tumorigenesis
IFN-γ plays an important role in innate and adaptive immunity. IFN-γ signaling is also involved in tumorigenesis, with both pro- and antitumor activities documented. We here report the characterization of intestinal tumorigenesis in ApcMin/+ mice that lack IFN-γ receptor. We observed that Ifngr1-/-ApcMin/+ mice are shorter-lived than Ifngr1+/+ApcMin/+ mice. The tumors in Ifngr1-/-ApcMin/+ mice ...
متن کامل